Low-rank scale-invariant tensor product smooths for generalized additive mixed models.

نویسنده

  • Simon N Wood
چکیده

A general method for constructing low-rank tensor product smooths for use as components of generalized additive models or generalized additive mixed models is presented. A penalized regression approach is adopted in which tensor product smooths of several variables are constructed from smooths of each variable separately, these "marginal" smooths being represented using a low-rank basis with an associated quadratic wiggliness penalty. The smooths offer several advantages: (i) they have one wiggliness penalty per covariate and are hence invariant to linear rescaling of covariates, making them useful when there is no "natural" way to scale covariates relative to each other; (ii) they have a useful tuneable range of smoothness, unlike single-penalty tensor product smooths that are scale invariant; (iii) the relatively low rank of the smooths means that they are computationally efficient; (iv) the penalties on the smooths are easily interpretable in terms of function shape; (v) the smooths can be generated completely automatically from any marginal smoothing bases and associated quadratic penalties, giving the modeler considerable flexibility to choose the basis penalty combination most appropriate to each modeling task; and (vi) the smooths can easily be written as components of a standard linear or generalized linear mixed model, allowing them to be used as components of the rich family of such models implemented in standard software, and to take advantage of the efficient and stable computational methods that have been developed for such models. A small simulation study shows that the methods can compare favorably with recently developed smoothing spline ANOVA methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Straightforward intermediate rank tensor product smoothing in mixed models

Tensor product smooths provide the natural way of representing smooth interaction terms in regression models because they are invariant to the units in which the covariates are measured, hence avoiding the need for arbitrary decisions about relative scaling of variables. They would also be the natural way to represent smooth interactions in mixed regression models, but for the fact that the ten...

متن کامل

Distance-based topological indices of tensor product of graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

متن کامل

Generalized scalar measures for diffusion MRI using trace, variance, and entropy.

This paper details the derivation of rotationally invariant scalar measures from higher-rank diffusion tensors (DTs) and functions defined on a unit sphere. This was accomplished with the use of an expression that generalizes the evaluation of the trace operator to tensors of arbitrary rank, and even to functions whose domains are the unit sphere. It is shown that the mean diffusivity is invari...

متن کامل

The Generalized Wiener Polarity Index of some Graph Operations

Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.

متن کامل

Functional Generalized Additive Models.

We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 62 4  شماره 

صفحات  -

تاریخ انتشار 2006